If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+30X-16200=0
a = 1; b = 30; c = -16200;
Δ = b2-4ac
Δ = 302-4·1·(-16200)
Δ = 65700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{65700}=\sqrt{900*73}=\sqrt{900}*\sqrt{73}=30\sqrt{73}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-30\sqrt{73}}{2*1}=\frac{-30-30\sqrt{73}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+30\sqrt{73}}{2*1}=\frac{-30+30\sqrt{73}}{2} $
| 4y-16=21 | | 4x+8=-17+9x | | -2t=3/2t-7 | | 6m–(3–m)+4=7m+1 | | (47/12)x=6 | | 1(2/3x)+2(1/4x)=6 | | (8x+5/5)=3x+2 | | 18x÷2=90 | | 6s-5=4s+19 | | 2x2+2=100 | | x/2+25=30 | | X^2+15x-32500=0 | | X/2+25=x+7 | | X^2+5x-32500=0 | | 6x13=6x | | 6(2x+1)-12=3(7x+6) | | 6(2x=1)-12=3(7x+6) | | 6(x-3)=5(3x+2) | | x/(-4)=6 | | (0.002)x=5x | | X+(x+8)+(2X)=60 | | (z-4)(z-5)=(z+4)(z-3)-8 | | 5^(5x)=5 | | |x-4|-|x+2|=6 | | 5^(5x)-5=0 | | 20-3x=-4(x-2) | | 3x+10=40+x | | 5x+11=60+2x | | 2(b-5)-3(5b+8)=5(b-2)+17 | | x/45=16/20 | | 20=(b+(b-3))/2 | | x*20=0.10 |